Introduction Stability and correctness Defining quadratic invariants as code annotations Verification conditions Mappi
0000 [e]e]

PVS Linear Algebra Libraries for Verification of
Control Software Algorithms in C/ACSL

Heber Herencia-Zapana, Romain Jobredeaux, Sam Owre,
Pierre-Loic Garoche, Eric Feron, Gilberto Perez, Pablo
Ascariz

National Institute of Aerospace, Georgia Institute of Technology

SRl International, ONERA, University of A Coruha

April, 2012

Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 1/35

Introduction Stability and correctness Defining quadratic invariants as code annotations Verification conditions Mappi
0000 [e]e)

Outline

0 Introduction

9 Stability and correctness

e Defining quadratic invariants as code annotations

0 Verification conditions

e Mapping ACSL predicates to PVS linear algebra concepts

e Conclusions

Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 2/35

Introduction Stability and correctness Defining quadratic invariants as code annotations Verification conditions Mappi
0000 [e]e]

@ The objective of control theory is to calculate a proper action from
the controller that will result in stability for the system

Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 3/35

Introduction Stability and correctness Defining quadratic invariants as code annotations Verification conditions Mappi
0000 [e]e]

@ The objective of control theory is to calculate a proper action from
the controller that will result in stability for the system

@ The software implementation of a control law can be inspected by
analysis tools

Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 3/35

Introduction Stability and correctness Defining quadratic invariants as code annotations Verification conditions Mappi
0000 [e]e]

@ The objective of control theory is to calculate a proper action from
the controller that will result in stability for the system

@ The software implementation of a control law can be inspected by
analysis tools

@ However these tools are often challenged by issues for which
solutions are already available from control theory.

Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 3/35

Introduction Stability and correctness Defining quadratic invariants as code annotations Verification conditions Mappi
0000 [e]e]

@ The objective of control theory is to calculate a proper action from
the controller that will result in stability for the system

@ The software implementation of a control law can be inspected by
analysis tools

@ However these tools are often challenged by issues for which
solutions are already available from control theory.

Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 3/35

Introduction Stability and correctness Defining quadratic invariants as code annotations Verification conditions Mappi
0000 [e]e]

@ Program verification uses proof assistants to ensure the validity of
user-provided code annotations.

Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 4/35

Introduction Stability and correctness Defining quadratic invariants as code annotations Verification conditions Mappi
0000 [e]e]

@ Program verification uses proof assistants to ensure the validity of
user-provided code annotations.

@ These annotations may express the domain-specific properties of
the code.

Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 4/35

Introduction Stability and correctness Defining quadratic invariants as code annotations Verification conditions Mappi
0000 [e]e]

@ Program verification uses proof assistants to ensure the validity of
user-provided code annotations.

@ These annotations may express the domain-specific properties of
the code.

@ However, formulating annotations correctly is nontrivial in practice.

Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 4/35

Introduction Stability and correctness Defining quadratic invariants as code annotations Verification conditions Mappi
0000 [e]e]

@ Program verification uses proof assistants to ensure the validity of
user-provided code annotations.

@ These annotations may express the domain-specific properties of
the code.

@ However, formulating annotations correctly is nontrivial in practice.

@ By correctly, we mean that the annotations formulate stability
properties of an intended mathematical interpretation from control
theory.

Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 4/35

Introduction Stability and correctness Defining quadratic invariants as code annotations Verification conditions Mappi
0000 [e]e]

In order to solve these two challenges this work proposes
@ Axiomatization of Lyapunov-based stability as C code annotations,

Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 5/35

Introduction Stability and correctness Defining quadratic invariants as code annotations Verification conditions Mappi
0000 [e]e]

In order to solve these two challenges this work proposes
@ Axiomatization of Lyapunov-based stability as C code annotations,
© Implementation of linear algebra and control theory results in PVS.

Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 5/35

Introduction Stability and correctness Defining quadratic invariants as code annotations Verification conditions Mappi
0000 [e]e]

Stability and Correctness

@ The basic module for the description of a controller can be
presented as

§(k+1) = f(E(K), v(k)), £(0) = &
C(k) = g(&(k), v(k))

where £ € R" is the state of the controller, v is the input of the
controller and ¢ is the output of the controller.

Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 6/35

Introduction Stability and correctness Defining quadratic invariants as code annotations Verification conditions Mappi
0000 [e]e]

Stability and Correctness

@ The basic module for the description of a controller can be
presented as

§(k+1) = f(E(K), v(k)), £(0) = &
C(k) = g(&(k), v(k))

where £ € R" is the state of the controller, v is the input of the
controller and ¢ is the output of the controller.

@ This system is bounded-input, bounded state stable if for every e
there exists a 0 such that ||v(k)|| < e implies ||£(k)|| <, for every
positive integer k.

Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 6/35

Introduction Stability and correctness Defining quadratic invariants as code annotations Verification conditions Mappi
0000 [e]e]

@ If there exists a positive definite function V' such that V({(k)) < 1
implies V' (£(k + 1)) < 1 then this function can be used to establish
the stability of the system.

Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 7135

Introduction Stability and correctness Defining quadratic invariants as code annotations Verification conditions Mappi
0000 [e]e]

@ If there exists a positive definite function V' such that V({(k)) < 1
implies V' (£(k + 1)) < 1 then this function can be used to establish
the stability of the system.

@ This Lyapunov function, V, defines the ellipsoid {¢]| V' (§) < 1}, this
ellipsoid plays an important role for the stability preservation at the
code level.

Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 7135

Introduction Stability and correctness Defining quadratic invariants as code annotations Verification conditions Mappi
€000 00

Control software and Hoare triples

Annotated with assertions in the Hoare style we get
°

{prel}
u = chc+Dcyc
{post1}

{pre2}
Xe = Acxc+chc
{post2}.

Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 8/35

Introduction Stability and correctness Defining quadratic invariants as code annotations Verification conditions Mappi
0®00 00

An ellipsoid-aware Hoare logic

@ To use ellipsoids to formally specify bounded input, bounded state
stability in.

Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 9/35

Introduction Stability and correctness Defining quadratic invariants as code annotations Verification conditions Mappi
0®00 00

An ellipsoid-aware Hoare logic

@ To use ellipsoids to formally specify bounded input, bounded state
stability in.
@ Typically, an instruction S would be annotated in the following way:

{xeéply=Ax+b{y—be o} (1)

where the pre- and post- conditions are predicates expressing that
the variables belong to some ellipsoid, with
E={r :RzTP~lzr <1} and Q = APAT.

Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 9/35

Introduction Stability and correctness D
0080 o

An ellipsoid-aware Hoare logic

efining quadratic invariants as code annotations Verification conditions Mappi
o]

The mathematical theorem that guarantees the relations is :

Theorem

If M, Q are invertible matrices, and
(x—c)TQ Y (x—c) <1and
y=Mzx-+b

then

(y—b— M) (MQMT)~Y(y —b— Mc) <1

We will refer to it as the ellipsoid affine combination theorem.

Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 10/35

Introduction Stability and correctness Defining quadratic invariants as code annotations Verification conditions Mappi
oooe 00

Verification conditions

x = zeros(2,1)

A Matlab program |

{:L'E Ep}.

5 while 1

{z € &p}

6: y = fscanf(stdin, "}f")
1: A = [0.4990, -0.0500; {x€£}

P
0.0100, 1.00001; 7. 7 = max{(min(y 1) ,-1J;
2. C = [-564.48, 0]; {ccér v <1}
3. B = [1;0];D = 1280; 8: u = C*x+D#*y;
: = s {zeép, uw’ <2A(CP'CT+D?, " <1

5. while 1 9: fprintf(stdout,"if\n" ,uw
6. y = fscanf (stdin,"Y£"):| {z € &p, o <1} =——=]
7 y = max(min(y,1),-1);
[B: u = C*x + D*y| {Am+By€ Ep, 3yt <1, ’?
9. fprintf (stdout, "%f\n",u) ;| v <2(cPret + DY)} '
10: x = A*x + B*y:| 9: fprintf(stdout,"jf\n" u
11: end {Az + Byeép, 3° <1}]

10 X = A%x + By,

{mE Ep}

11:end

{false}

Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 11/35

Introduction Stability and correctness Defining quadratic invariants as code annotations Verification conditions Mappi
0000 [e]e]

@ Now that we know the annotations that we want to generate on
the code, we have to find a concrete way to express them on
actual C code.

Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 12/35

Introduction Stability and correctness Defining quadratic invariants as code annotations Verification conditions Mappi
0000 [e]e]

@ Now that we know the annotations that we want to generate on
the code, we have to find a concrete way to express them on
actual C code.

@ The ANSI/ISO C Specification Language (ACSL) allows its user to
specify the properties of a C program within comments,

Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 12/35

Introduction Stability and correctness Defining quadratic invariants as code annotations Verification conditions Mappi
0000 [e]e]

@ Now that we know the annotations that we want to generate on
the code, we have to find a concrete way to express them on
actual C code.

@ The ANSI/ISO C Specification Language (ACSL) allows its user to
specify the properties of a C program within comments,

@ This language was proposed as part of the Frama-C platform,

Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 12/35

Introduction Stability and correctness Defining quadratic invariants as code annotations Verification conditions Mappi
0000 [e]e]

Verification conditions

KML-annotated ACSL-annotated
Java program C program

']
2 ¥
(collab. CEA

Why verification

conditions

¥

‘ Encoders/Printers |-—}| Alt-Ergo

Interactive provers Other automatic provers
(Coq, PVS, (Simplify, Yices,
Isabelle/HOL, etc.) 73, CVC3, etc)

Figure 2: Verification

Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 13/35

Introduction Stability and correctness Defining quadratic invariants as code annotations Verification conditions Mappi
0000 [e]e]

@ We outline the axiomatization in ACSL to fit our needs, which
consist of expressing ellipsoid-based Hoare triples over C code.

Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 14/35

Introduction Stability and correctness Defining quadratic invariants as code annotations Verification conditions Mappi
0000 [e]e]

@ We outline the axiomatization in ACSL to fit our needs, which
consist of expressing ellipsoid-based Hoare triples over C code.

@ We first present the axiomatization of linear algebra elements in
ACSL.

Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 14/35

Introduction Stability and correctness Defining quadratic invariants as code annotations Verification conditions Mappi
0000 [e]e]

@ We outline the axiomatization in ACSL to fit our needs, which
consist of expressing ellipsoid-based Hoare triples over C code.

@ We first present the axiomatization of linear algebra elements in
ACSL.

@ Then we present the Hoare triple annotations in ACSL and the
POs generated by them.

Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 14/35

Introduction Stability and correctness Defining quadratic invariants as code annotations Verification conditions Mappi
0000 [e]e]

@ The following abstract types are declared: —
(//@ type matrix; type vector C)j

Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 15/35

Introduction Stability and correctness Defining quadratic invariants as code annotations Verification conditions Mappi
0000 [e]e]

@ The following abstract types are declared: —
(//@ type matrix; type vector (:::)_)

@ With these abstract types, basic matrix operations and properties
are introduced ACSL
@ logic real mat_select(matrix A, integer i, integer S
@ logic integer mat_row(matrix A);
@ logic integer mat_col(matrix A);

Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 15/35

Introduction Stability and correctness Defining quadratic invariants as code annotations Verification conditions Mappi
0000 [e]e]

@ The multiplication of a matrix with a vector is defined with function
vect_mult(matrix A, vector z), which returns a vector.

Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 16 /35

Introduction Stability and correctness Defining quadratic invariants as code annotations Verification conditions Mappi
0000 [e]e]

@ The multiplication of a matrix with a vector is defined with function
vect_mult(matrix A, vector z), which returns a vector.

@ Addition and multiplication of 2 matrices, multiplication by a scalar,
and inverse of a matrix are declared as matrix types

Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 16 /35

Introduction Stability and correctness Defining quadratic invariants as code annotations Verification conditions Mappi
0000 [e]e]

inverse of a matrix A, mat_inverse(A) is defined using the predicate
is_invertible(A) as follows:

/%@ axiom mat.inv_select.i_eq.: (s
@ VmatrixA, integer i, j;

is_invertible(A) && i ==j ==
mat_select(mat_mult(A, mat_inverse(A4)),4,j) =1

axiom mat.inv_select.i_dff j:

VmatrixA, integer i, j;

is_invertible(A) && i! = j ==
mat_select(mat_mult(A, mat_inverse(A4)),4,j) =0
O/

©@ 0 0 0 o b

Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 17 /35

Introduction Stability and correctness Defining quadratic invariants as code annotations Verification conditions Mappi
0000 [e]e]

Complex constructions or relations can be defined as uninterpreted
predicates. The following predicate is meant to express that vector =
belongs to &p:

ACSL
0(//@ predicate in_ellipsoid(matrix P, vector x); C)j

Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 18/35

Introduction Stability and correctness Defining quadratic invariants as code annotations Verification conditions Mappi
0000 [e]e]

Complex constructions or relations can be defined as uninterpreted
predicates. The following predicate is meant to express that vector =
belongs to &p:

- - - - ACSL
0(//@ predicate in_ellipsoid(matrix P, vector x); C)j

@ mat_of_array or vect_of_array, is used to associate an ACSL matrix
type to a C array. —
[//@ logic matrix mat_of_array{L}(float *A, integer row;

integer col);

Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 18/35

Introduction Stability and correctness Defining quadratic invariants as code annotations Verification conditions Mappi
0000 [e]e]

ACSL

// @ axiom mat_of array_select:
@ forall float *A; forall integer i, j, k, 1;
@ mat_select(mat_of_array(A, k, 1), i, j) == A[1l*i+j];

Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 19/35

Introduction Stability and correctness Defining quadratic invariants as code annotations Verification conditions Mappi
0000 0

@ The paramount notion in ACSL is the function contract.

Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 20/35

Introduction Stability and correctness Defining quadratic invariants as code annotations Verification conditions Mappi
0000 0

@ The paramount notion in ACSL is the function contract.

@ The key word requires is used to introduce the pre-conditions of
the triple, and the key word ensures is used to introduce its
post-conditions.

Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 20/35

Introduction Stability and correctness Defining quadratic invariants as code annotations Verification conditions Mappi
0000 0

@ The paramount notion in ACSL is the function contract.

@ The key word requires is used to introduce the pre-conditions of
the triple, and the key word ensures is used to introduce its
post-conditions.

@ //@ require P
//@ ensures R
Q

Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 20/35

Introduction Stability and correctness Defining quadratic invariants as code annotations Verification conditions Mappi
0000 0

@ The paramount notion in ACSL is the function contract.

@ The key word requires is used to introduce the pre-conditions of
the triple, and the key word ensures is used to introduce its
post-conditions.

@ //@ require P
//@ ensures R
Q

Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 20/35

Introduction Stability and correctness Defining quadratic invariants as code annotations Verification conditions Mappi
0000 oe

@ We need to deal with memory issues. In general, we want all
functions to be called with valid pointers as arguments, i.e., valid
array and therefore valid matrices.

Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 21/35

Introduction Stability and correctness Defining quadratic invariants as code annotations Verification conditions Mappi
0000 oe

@ We need to deal with memory issues. In general, we want all
functions to be called with valid pointers as arguments, i.e., valid
array and therefore valid matrices.

@ This is what the built-in ACSL predicate valid does. The followings
snippet shows how the contract can be written using mat_select
and mat_of_array,

Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 21/35

Introduction Stability and correctness Defining quadratic invariants as code annotations Verification conditions Mappi
0000 oe

@ We need to deal with memory issues. In general, we want all
functions to be called with valid pointers as arguments, i.e., valid
array and therefore valid matrices.

@ This is what the built-in ACSL predicate valid does. The followings
snippet shows how the contract can be written using mat_select

and mat_of_array,
: ACSL ’—\

(/%@ requires (valid(a + (0..3)));

@ ensures Vinteger ¢,5;0< i<2 && 0< 7 <2
@ ==> mat_select(mat_of_array(a, 2,2),4,j) == 0;
Q x/

void zeros_2x2(float* a)

{ al01=0; al1]=0; a[2]=0; a[3]=0; }

\

Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 21/35

Introduction Stability and correctness Defining quadratic invariants as code annotations Verification conditions Mappi
0000 [e]e]

p AGSL
@ Ac = mat_of 2x2 scalar(0.449,-0.05,0.01,1.); (s
@ P = mat_of_2x2_scalar(1.5325,10.0383,10.0383,507.2450) ;
@ Q = matmult(mat_inv(transpose(Ac)) ,mat mult(P,mat_inv(Ac)));

@ requires (valid(xc + (0..1)));
@ requires (valid(yc + (0..1)));
@ requires in_ellipsoid(P,vect_of_array(xc,2));
@ ensures in ellipsoid(Q,vect_of _array(yc,2));*/
void inst2(float* xc, float* yc)
{ yc[0]= 0.449*xc[0] + -0.05*xc[1];

Lyc[1]= .01*xc[0] + 1.*xc[1]; }

Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 22/35

Introduction Stability and correctness Defining quadratic invariants as code annotations Verification conditions Mappi
0000 [e]e]

@ Errors due to floating point approximations are thus not taken into
account.

Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 23/35

Introduction Stability and correctness Defining quadratic invariants as code annotations Verification conditions Mappi
0000 [e]e]

@ Errors due to floating point approximations are thus not taken into
account.

@ The Frama-C toolset offers the possibility of making this
assumption by including 'JessieFloatModel(Math)’.

Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 23/35

Introduction Stability and correctness Defining quadratic invariants as code annotations Verification conditions Mappi
0000 [e]e]

@ Frama-C tools do not require an annotation at each line as
proposed by Hoare.

Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 24/35

Introduction Stability and correctness Defining quadratic invariants as code annotations Verification conditions Mappi
0000 [e]e]

@ Frama-C tools do not require an annotation at each line as
proposed by Hoare.

@ They rather rely weakest precondition calculus.

Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 24/35

Introduction Stability and correctness Defining quadratic invariants as code annotations Verification conditions Mappi
0000 [e]e]

@ Frama-C tools do not require an annotation at each line as
proposed by Hoare.

@ They rather rely weakest precondition calculus.

@ The proof obligation (PO) is then P — wp(S, Q) where P is the
pre-condition.

Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 24/35

Introduction Stability and correctness Defining quadratic invariants as code annotations Verification conditions Mappi
0000 [e]e]

@ On the one hand, using ACSL and the Frama-C framework, we
were able to generate POs about the ellipsoid predicate.

Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 25/35

Introduction Stability and correctness Defining quadratic invariants as code annotations Verification conditions Mappi
0000 [e]e]

@ On the one hand, using ACSL and the Frama-C framework, we
were able to generate POs about the ellipsoid predicate.
@ Frama-C tools even make it possible to express the PO in PVS,

along with a complete axiomatisation in PVS of C programs
semantics.

Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 25/35

Introduction Stability and correctness

Defining quadratic invariants as code annotations Verification conditions Mappi
0000 [e]e]

in_ellipsoid?(P_0, vect_of_array(xc, 2, floatP_floatM))))))
IMPLIES

in_ellipsoid?(Q, vect_of_array(yc, 2, floatP_floatM0))

PVS
vect_of _array(yc, 2, floatP_floatM0)’vect =
Ac * vect_of _array(xc, 2, floatP_floatM)’vect

For both POs,

@ we must first interpret the uninterpreted types and to prove the
properties that are defined axiomatically.

Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 26/35

Introduction Stability and correctness

Defining quadratic invariants as code annotations Verification conditions Mappi
0000 [e]e]

in_ellipsoid?(P_0, vect_of_array(xc, 2, floatP_floatM))))))
IMPLIES

in_ellipsoid?(Q, vect_of_array(yc, 2, floatP_floatM0))

PVS
vect_of _array(yc, 2, floatP_floatM0)’vect =
Ac * vect_of _array(xc, 2, floatP_floatM)’vect

For both POs,

@ we must first interpret the uninterpreted types and to prove the
properties that are defined axiomatically.

@ We must then discharge the verification conditions. This is done
by using PVS and a linear algebra extension of it.

Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 26/35

Introduction Stability and correctness Defining quadratic invariants as code annotations Verification conditions Mappi
0000 [e]e]

PVS

Mapping:TYPE= [# dom: posnat, codom: posnat, mp:
[Vector [dom] ->Vector [codom]] #]

Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 27/35

Introduction Stability and correctness Defining quadratic invariants as code annotations Verification conditions Mappi
0000 [e]e]

PVS
Mapping:TYPE= [# dom: posnat, codom: posnat, mp:

[Vector [dom] ->Vector [codom]] #]

\.

PVS
L(n,m)(f) = (# rows:=m, cols:=n, matrix:=A(j,i):

f‘mp(e(n) (1)) (j) #)
T(n,m) (A) = (# dom:=n, codom:=m, mp:=A(x,j): Z?;@h‘J(A(i):
A‘matrix(j,i)*x(i) #))

Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 27/35

Introduction Stability and correctness Defining quadratic invariants as code annotations Verification conditions Mappi
0000 [e]e]

PVS

@ Mapping:TYPE= [# dom: posnat, codom: posnat, mp:
l [Vector [dom]->Vector[codom]] #]

\.

PVS

@ L(n,m)(f) = (# rows:=m, cols:=n, matrix:=A(j,i):
fmp(e(n) (1)) (j) #)
T(n,m) (A) = (# dom:=n, codom:=m, mp:=A(x,j): Z?‘:Cgls*l()\(i):
Afmatrix(j,i)*x(i) #))

PVS
@ Matrix_ inv(n) :TYPE = {A: Square | squareMat?(n) (A) andg
[bijective? () (T(n,n) (A))})

Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 27/35

Introduction Stability and correctness Defining quadratic invariants as code annotations Verification conditions Mappi
0000 [e]e]

PVS

@ Mapping:TYPE= [# dom: posnat, codom: posnat, mp:
l [Vector [dom]->Vector[codom]] #]

\.

PVS

@ L(n,m)(f) = (# rows:=m, cols:=n, matrix:=A(j,i):
fmp(e(n) (1)) (j) #)
T(n,m) (A) = (# dom:=n, codom:=m, mp:=A(x,j): Z?‘:Cé’ls*l()\(i):
Afmatrix(j,i)*x(i) #))

Matrix_inv(n) :TYPE = {A: Square | squareMat?(n)(A) and
bijective?(n) (T(n,n) (A))}

—
@
<
w

\. \.

PVS
(inv(n) (A) = L(n,n) (inverse(n) (T(n,n) (A)))

Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 27/35

Introduction Stability and correctness

Defining quadratic invariants as code annotations Verification conditions Mappi
0000 [e]e]

ellipsoid_affine comb: LEMMA V (n:posnat, Q, M: SquareMat(ny5%,
y, b, c: Vector[n]):

bijective?(n) (T(n,n) (Q)) AND bijective?(n) (T(n,n) (M))
AND (x-c)*(inv(n) (Q)*(x-c))< 1

AND y=M*x + b

IMPLIES

| (y-b-Mxc)*(inv(n) (M*(Q*transpose(M)))*(y-b-Mxc))< 1

Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 28/35

Introduction Stability and correctness Defining quadratic invariants as code annotations Verification conditions Mappi
0000 [e]e]

@ We have developed a PVS library that is able to reason about
these properties.

Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 29/35

Introduction Stability and correctness Defining quadratic invariants as code annotations Verification conditions Mappi
0000 [e]e]

@ We have developed a PVS library that is able to reason about
these properties.

@ We now must link these two worlds: ACSL ellipsoids predicate
proof obligation in PVS must be connected with with our linear
algebra PVS library.

Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 29/35

Introduction Stability and correctness Defining quadratic invariants as code annotations Verification conditions Mappi
0000 [e]e]

Verification conditions and theory interpretation

@ Theory interpretation is a logical technique for relating one
axiomatic theory to another.

Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 30/35

Introduction Stability and correctness Defining quadratic invariants as code annotations Verification conditions Mappi
0000 [e]e]

Verification conditions and theory interpretation

@ Theory interpretation is a logical technique for relating one
axiomatic theory to another.

@ Interpretations can be used to show:
@ An axiomatically defined specification is consistent

Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 30/35

Introduction Stability and correctness Defining quadratic invariants as code annotations Verification conditions Mappi
0000 [e]e]

Verification conditions and theory interpretation

@ Theory interpretation is a logical technique for relating one
axiomatic theory to another.

@ Interpretations can be used to show:
@ An axiomatically defined specification is consistent

@ or that a axiomatically defined specification captures its intended
models.

Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 30/35

Introduction Stability and correctness Defining quadratic invariants as code annotations Verification conditions Mappi
[e]e]

0000

[IMPORTING acsl_theory{{ matrix := Matrix, e

vector := Vector_no_param,

vect_length := LAMBDA (v:Vector_no_param): v’length,

mat_row := LAMBDA (M:Matrix): M’rows,

mat_col := LAMBDA (M:Matrix): M’cols,

mat mult := *,

in_ellipsoid := in_ellipsoid?

mat_inv := LAMBDA (M:Matrix): IF square?(M) THEN IF

bijective?(M’rows) (T(M’rows,M’rows) (M))

THEN inv(M’rows) (M)

ELSE M

ENDIF

| ELSE M ENDIF 1)
Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 31/35

Introduction Stability and correctness Defining quadratic invariants as code annotations Verification conditions Mappi
0000 [e]e]

PVS
in_ellipsoid?(P_0, vect_of_array(xc, 2, floatP_floatM))

IMPLIES
in_ellipsoid?(Q, vect_of_array(yc, 2, floatP_floatMO0))

Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 32/35

Introduction Stability and correctness Defining quadratic invariants as code annotations Verification conditions Mappi
0000 [e]e]

VS

P
in_ellipsoid?(P_0, vect_of_array(xc, 2, floatP_floatM))
IMPLIES
in_ellipsoid?(Q, vect_of_array(yc, 2, floatP_floatMO0))

PVS

@ bijections :LEMMA
l bijective?(2) (T(2,2) (P.0)) AND bijective?(2)(T(2,2)(Ac))

where Ac = mat_of 2x2_scalar(0.449, —0.05,0.01,1.) and
P = mat_of 222_scalar(1.5325,10.0383, 10.0383, 507.2450)

Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 32/35

Introduction Stability and correctness Defining quadratic invariants as code annotations Verification conditions Mappi
0000 [e]e]

Conclusions

@ We have described a global approach to validate stability
properties of C code implementing controllers.

Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 33/35

Introduction Stability and correctness Defining quadratic invariants as code annotations Verification conditions Mappi
0000 [e]e]

Conclusions

@ We have described a global approach to validate stability
properties of C code implementing controllers.

@ Our approach requires the code to be annoted by Hoare triples,

Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 33/35

Introduction Stability and correctness Defining quadratic invariants as code annotations Verification conditions Mappi
0000 [e]e]

Conclusions

@ We have described a global approach to validate stability
properties of C code implementing controllers.

@ Our approach requires the code to be annoted by Hoare triples,

@ proving the stability of the control code using ellipsoid affine
combinations.

Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 33/35

Introduction Stability and correctness Defining quadratic invariants as code annotations Verification conditions Mappi
0000 [e]e]

Conclusions

@ We have described a global approach to validate stability
properties of C code implementing controllers.

@ Our approach requires the code to be annoted by Hoare triples,

@ proving the stability of the control code using ellipsoid affine
combinations.

@ We have defined an ACSL extension to describe predicates over
the code, as well as a PVS library able to manipulate these
predicates.

Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 33/35

Introduction Stability and correctness Defining quadratic invariants as code annotations Verification conditions Mappi
0000 [e]e]

@ Theory interpretation maps proof obligations generated from the
code to their equivalent in this PVS library.

Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 34/35

Introduction Stability and correctness Defining quadratic invariants as code annotations Verification conditions Mappi
0000 [e]e]

@ Theory interpretation maps proof obligations generated from the
code to their equivalent in this PVS library.

@ This mapping allows to discharge POs using the ellipsoid affine
combination theorem implemented in PVS.

Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 34/35

Introduction Stability and correctness Defining quadratic invariants as code annotations Verification conditions Mappi
0000 [e]e]

@ Theory interpretation maps proof obligations generated from the
code to their equivalent in this PVS library.

@ This mapping allows to discharge POs using the ellipsoid affine
combination theorem implemented in PVS.

@ Linear algebra PVS libraries can be used for the formal
specification of control theory properties

Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 34/35

Introduction Stability and correctness Defining quadratic invariants as code annotations Verification conditions Mappi
0000 [e]e]

@ Theory interpretation maps proof obligations generated from the
code to their equivalent in this PVS library.

@ This mapping allows to discharge POs using the ellipsoid affine
combination theorem implemented in PVS.

@ Linear algebra PVS libraries can be used for the formal
specification of control theory properties

Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 34/35

Introduction Stability and correctness Defining quadratic invariants as code annotations Verification conditions Mappi
0000 [e]e]

The authors would like to thank

@ A. Goodloe for his suggestion of the use of the Frama-C toolset
and his help in axiomatising of linear algebra in ACSL.

Heber Herencia-Zapana,, Romain Jobredea National Institute of Aerospace 35/35

	Introduction
	Stability and correctness
	Application to controller stability: an ellipsoid-aware Hoare logic

	Defining quadratic invariants as code annotations
	Linear Algebra code annotation

	Verification conditions
	Mapping ACSL predicates to PVS linear algebra concepts
	Conclusions
	Acknowledgments

